教授
所在位置 网站首页 > 师资队伍 > 专任教师 > 教授 > 正文
熊涛

职称:教授

职务:

学历:博士

电子邮件:txiong@xmu.edu.cn

联系电话:0592-2580789

办 公 室:海韵园数学科学学院C楼C506B

教育经历:

2007.09-2012.06 中国科学技术大学 博士

2003.09-2007.07 中国科学技术大学 本科


工作经历:

2017.11-至今  加拿大28预测在线预测可刮奖 教授

2015.09-2017.10 加拿大28预测在线预测可刮奖 副教授

2012.08-2015.08 美国休斯顿大学 博士后


研究方向:

计算流体力学和动理学方程高精度数值方法


授课情况:

本科生常微分方程,研究生高等数值分析


主持项目:

国家自然科学面上基金 11971025, 2020.01-2023.12

福建省自然科学杰出青年基金 2019J06002,2019.07-2022.06


论文:(近期发表,*为通讯作者)

[1]. P. Zhang, T. Xiong*, High order implicit finite difference schemes with a semi-implicit WENO reconstruction for nonlinear degenerate parabolic equations, Journal of Computational Physics, 467 (2022), 111442

[2]. S. Boscarino, J. Qiu, G. Russo and T. Xiong*, High order semi-implicit WENO schemes for all-Mach full Euler system of gas dynamics, SIAM Journal on Scientific Computing, 44 (2022), B368-B394

[3]. T.Xiong*, W. Sun, Y. Shi and P. Song, High order asymptotic preserving discontinuous Galerkin methods for gray radiative transfer equations, Journal of Computational Physics, 463 (2022), 111308

[4]. G. Huang, Y. Xing and T. Xiong*, High order well-balanced asymptotic preserving finite difference WENO schemes for the shallow water equations in all Froude numbers, Journal of Computational Physics, 463 (2022), 111255

[5]. G. Zhang and T. Xiong*, A high order bound preserving finite difference linear scheme for incompressible flows, Communications in Computational Physics, 32 (2022), 126-155

[6]. F. Filbet and T. Xiong*, Conservative discontinuous Galerkin/Hermite Spectral Method for the Vlasov-Poisson System, Communications on Applied Mathematics and Computation,4 (2022), 34-59

[7]. G. Zhang, S. Zheng, T. Xiong*, A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional nonlinear hyperbolic equations, Electronic Research Archive, 29 (2021), 1819-1839.

[8]. Y. Ren, T. Xiong, J. Qiu*, A hybrid finite difference WENO-ZQ fast sweeping method for static Hamilton-Jacobi equations, Journal of Scientific Computing, 83 (2020), 54.

[9]. S. Boscarino*, J. Qiu, G. Russo, T. Xiong, A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system, Journal of Computational Physics,392 (2019),594-618

[10]. T. Xiong, G. Russo, J. Qiu*, Conservative multi-dimensional semi-Lagrangian finite difference scheme: stability and applications to the kinetic and fluid simulations, Journal of Scientific Computing, 79 (2019), 1241-1270

[11]. F. Filbet*, T. Xiong, A hybrid discontinuous Galerkin scheme for multiscale kinetic equations, Journal of Computational Physics, 372 (2018), 841-863

[12]. T. Xiong, G. Russo, J. Qiu*, High order multi-dimensional characteristic tracing for the incompressible Euler equation and the Guiding-center Vlasov equation, Journal of Scientific Computing, 77 (2018), 263-282

[13]. F. Filbet*, T. Xiong, E. Sonnendrucker, On the Vlasov-Maxwell system with a strong external magnetic field, SIAM Journal on Applied Mathematics, 78 (2018), 1030-1055

[14]. T. Xiong and J. Qiu*, A hierarchical uniformly high order DG-IMEX scheme for the 1D BGK equation, Journal of Computational Physics, 336 (2017), 164-191

学生培养:

已毕业博士:张国梁 (第一站:上海交通大学博士后)

在读博士:黄官兰,张鹏,郑少钦,张楠,刘鑫源,蔡逸

在读硕士:周彬楠,陈威